

SECCHI Concept of Operations

Simon Plunkett SECCHI Operations Scientist Naval Research Laboratory

STEREO Science Working Group May 22, 2006

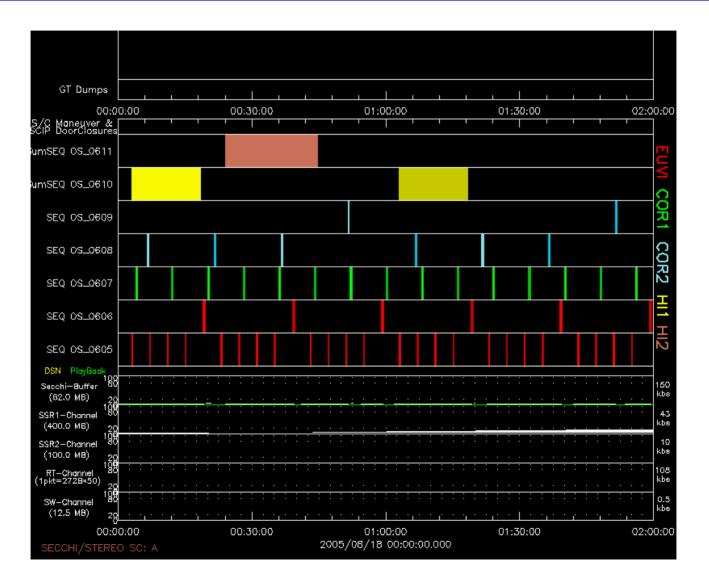
STEREO - Solar Terrestrial Relations Observatory Mission

Heliocentric Operations Concept

- During normal operations, POC will be located at NRL.
- POC sends commands to and receives telemetry from the instrument via the MOC.
 - Automated processing of telemetry as it is received.
 - Automated instrument health and safety checks, with 24/7 availability of staff to respond in case of emergency.
- Identical synoptic observing program coordinated between two spacecraft, with additional special observing programs as needed.
 - Light travel time difference between spacecraft handled by an adjustable constant on each spacecraft.
- Daily command loads to both spacecraft, communicated to MOC at least 8 hours in advance of the pass.
- In case of problems at NRL or if proximity to MOC is required, POC will relocate temporarily from NRL to APL.

Observation Planning

- Planning cycle has multiple stages, with more detailed plans established at each stage:
 - Broad science goals are established semi-annually.
 - Tentative plans are established at monthly planning meetings.
 - Specific targets and observing programs are established weekly but can be "tweaked" daily.
- Similar observing plan will be carried out every day in any given week:
 - Structures take about two weeks to cross solar disk.
 - STEREO spacecraft separate at about 1 degree/week.
- Observing plan for one or more days is generated by the operator using the SECCHI planning tool and will be uploaded daily to both spacecraft:
 - Default observing program will be executed by flight software in case plan cannot be uploaded.



- Observation programs are controlled by the SECCHI planning tool, which does constraint checking based on instrument performance and other restrictions.
- Synoptic observing program:
 - Identical programs always maintained in both spacecraft.
 - Permits stereoscopic observations of active and quiescent Sun to observe fundamental processes.
 - Based on SECCHI science objectives and data rate at various stages of the mission.
- Special observing programs:
 - Not necessarily on both spacecraft (e.g. higher cadence observations from EUVI on STEREO-A).
 - Special observations from on-board CME detection capability.
- Nominal SSR partition sizes are set to 80% for synoptic and 20% for an autonomous or special event buffer.

Planning Tool Graphical Interface

STEREO - Solar Terrestrial Relations Observatory Mission

Data Rate	Mission Time (months)	Mbits/day
High	0-14	4668.56
Medium	14-18	4309.00
Low	18-24	3921.26

- Real-time channel provides immediate downlink of data during the daily ground contact:
 - Nominal real-time data rate for SECCHI is 3.6 kbps.
 - Only useful for housekeeping data.
- Most instrument data are stored on-board in the solid-state recorder (SSR) for downlink during the daily real-time passes.

- SECCHI solid-state recorder allocation is 6553 Mb (819 MB), divided into two partitions plus space weather beacon data.
- SSR allocation for space weather beacon data is 100 Mb.
- SSR1 is 80% of the total science allocation (5162 Mb):
 - SSR1 is intended to be used for the synoptic observing program.
 - SSR1 stops accepting data when full; additional data sent to this partition will be lost.
 - SSR1 is nominally dumped once every day during the scheduled ground contact.
- SSR2 is 20% of the total science allocation (1291 Mb):
 - SSR2 is a circulating buffer, set to overwrite the oldest data when full, unless an event trigger is set.
 - SSR2 is nominally dumped 20% every day during the scheduled ground contact \Rightarrow 5 days required to downlink the full contents of SSR2.
- All data are written to the SSR for later downlink (including real-time and space weather data).

Sample Daily Synoptic Program (Months 0-14)

Telescope	# Images and Size (pixels)	Cadence (minutes)	Total Images/Day	Compression Factor (*)	Fraction Transmitted	Total Mbits/Day
EUVI	2 1k x 1k	4	576	10.0	1.0	845.6
	4 2k x 2k	20	288	10.0	1.0	1691.1
COR1	3 1k x 1k	8	540	10.0	1.0	792.7
COR2	3 2k x 2k	60	72	10.0	1.0	422.8
	3 1k x 1k	15	216	10.0	1.0	317.1
HI1	1 1k x 1k	60	24	2.5	1.0	211.4
HI2	1 1k x 1k	120	12	2.5	1.0	105.7
Total			1728			4386.4

* Assumes ICER compression for SCIP images.

STEREO - Solar Terrestrial Relations Observatory Mission

- SECCHI Campaign periods consist of an additional DSN track lasting 1.75 hours each day, beginning 12 hours after the start of the normal daily track, for a total of 4 weeks during the nominal mission.
- This will enable downlink of additional SECCHI data (approximately twice the nominal daily data volume), and will enable high-cadence observations targeted to specific science objectives.
- Other instruments continue to receive their normal daily data volumes.
- SECCHI has planned to schedule the 4 weeks as two periods of 2 weeks each:
 - Campaign periods will be based on spacecraft separation angles desired for specific science objectives.
 - First campaign period is requested to be scheduled when the spacecraft are separated by 10 degrees (occurs in February 2007, assuming July 2006 launch).
 - Campaign periods will be finalized at least 6 months in advance, to allow time for scheduling of extra DSN tracks.

- SECCHI space weather beacon will be broadcast continuously at a rate of 504 bps.
- SECCHI has provided software to SSC to process this telemetry into data files.
- Image sequences and compression factors to be used for beacon are still being defined, and can be modified after launch if required.
- Current plan is to downlink the equivalent of 7 images per hour binned to 256×256 pixels:
 - COR2 images at ~15 minute intervals.
 - HI1 and HI2 images each every other hour.
 - One EUVI and COR1 image per hour.
 - EUVI images binned to 64×64 pixels.
 - Subset of event messages.

- Calibration maneuvers include spacecraft rolls and offpoints:
 - GT gain calibration, and COR1/COR2 stray light optimization, require SEB commanded offpoints up to \pm 40 arc seconds in both pitch and yaw.
 - EUVI flat-fielding (and initial post-launch GT calibration) requires spacecraft-driven offpoints up to ±12 arc minutes in both pitch and yaw.
 - Polarization and stray light calibrations require a 360° stepped roll, with step sizes of 30° to 60°.
- Offpoint maneuvers are anticipated to occur every 2-3 months, and roll maneuvers every 6 months.
- Calibration (and other) maneuvers will be coordinated at least 2 weeks in advance.